
International Journal of Theoretical Physics, Vol. 37, No. 8, 1998

Preferred Consistent History Sets
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The theme of this paper is the multiplicity of the consistent sets of histories
emerging in the consistent-histor ies approach to quantum mechanics. We propose
one criterion for choosing preferred families among them: that the physically
realizable quasiclassical domain ought to be one corresponding to classical
histories. We examine the way classical mechanics arises as a particular window,
and the important role played by the canonical group and the Hamiltonian. We
finally discuss a possible implication of our selection criterion: that only a class
of Hilbert space operators corresponds to physical quantities, and hence the full
nondistributivi ty of the lattice of quantum propositions is redundant.

1. INTRODUCTION

The consistent histories approach (Griffiths, 1984; OmneÁ s 1988a, b,

1989, 1996; Gell-Mann and Hartle, 1990, 1993; Hartle, 1993; Isham, 1994;

Isham and Linden, 1994; Dawker and Helliwell, 1992; Douker and Kent,

1996)Ð or rather approaches, taking into account its diverse formulationsÐ

has been a subject of increasing interest in recent years. It provides a view
of time as an intrinsic object in quantum theory (particularly appealing when

considering quantum cosmology), a natural language for discussion of the

emergence of classical behavior, and is believed to constitute a converging

point for diverse ideas from different interpretations of quantum theory.

Still it seems that an old problem (or at least a point of unease) of the
Copenhagen interpretation has been transferred into the histories approach:

the notion of complementarity. The inability according to the Copenhagen

interpretation to assign simultaneously properties to a quantum system that

correspond to noncommuting operators is translated in the history language
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into the question of the many different ª windows to realityº or more precisely

the multitude of maximal consistent sets of histories corresponding to one

decoherence functional. Both are an expression of the nondistribut ive charac-
ter of the lattice of quantum propositions; or equivalently of the implicit

fundamental assumption that all physical observables (and consequently prop-

ositions about them) have a counterpart in Hilbert space operators.

The counterintuitive (and rather disturbing) nature of the attitude to

accept all windows as real has been demonstrated in a series of papers by

Kent. He showed in particular that (a) contradictory propositions can be
inferred with probability one when one is reasoning within different consistent

sets and (b) a quasiclassical domain is generically either not stable in time

or does not allow inferences according to the predictions of the corresponding

classical theory. In the absence of a precise selection criterion, the consistent

histories theory loses much of its predictive power, since, for instance, the

quasiclassical limit of nonrelativistic classical mechanics cannot be uniquely
determined. We thus lose sight of the transition ª from Hilbert space to

common sense.º

In this paper we will argue under the assumption that somehow only

one window is physically relevant and realizable, the one corresponding to

the classical world as we experience it.3 There has been a number of ideas
and conjectures for an algorithm that would enable us to select this particular

window (Kent McElwane, 1997; Kent, 1996; Isham and Linden, 1996), while

keeping the established mathematical structures of the history formalism. I

think that we should distinguish two possibilities in the formulation of such

a criterion:

(i) Introduce an additional postulate (intrinsic in the mathematical struc-
ture of the theory)

(ii) Specify the physical context of a history theory and identify within

this a mechanism that selects a physical window.

We should elaborate on this point in order to clarify the distinction.

History theory in its current axiomatic form is of a purely logical-statistical
nature. Its primitive concept is the notion of temporally ordered propositions,

it contains a rule for probability assignment, and implication is defined

through conditional probability. It is a universal theory since at no point in

its axiomatics does the need to specify its physical content arise. In this sense

history theory (as any quantum logic scheme) can be viewed as the attempt

to capture the general rules upon which reasoning about physical systems
should be based. And of course this raises the question (implicit in many

debates about the completeness of quantum mechanics) whether it is meaning-

3 This is of course not the only option; see, e.g., Isham (1997) and Hartle and Griffiths (1997).
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ful to describe the physical world using a context-free abstract language. This

debate is particularly pronounced here, since the many-windows issue might

be taken to imply that not even a concrete representation of the logic can be
sufficient to determine the physical content of a theory.

The difference between the two lines of inquiry should now be clear.

According to the first, there would be no reason to abandon the universal,

logical character of the histories axiomatics, while the second admits the

necessity to seek a selection mechanism in the physics of the system.

Proposals of type (i) discussed or implied so far are mainly of a ª teleolog-
icalº type (in the same sense that minimum entropy or minimum action

principles are) minimization of some information measure or maximization

of some sharp probability measure defined on sets of consistent histories. I

do not think that a criterion of this type can be eventually successful. The

reason for this lies in the plethora of consistent sets, many of them being

remarkably trivial. For instance, if one wanted to use minimization of the IL
entropy as a criterion [which is not something that Isham and Linden (1996)

have proposed, but could be a valid conjecture], we would have to contend

with histories made out of spectral projections of the initial density matrix.

But even if a criterion nicely avoiding all trivial cases were to be found, we

would still have to cope with the issue of the nonpersistence/nonpredictability
of the selected quasiclassical domain. To avoid this, one would have to

consider sets of histories with temporal support reaching arbitrarily far into

the future. This would entail a highly uncausal prediction algorithm, in direct

conflict with the (cosmological) motivations of a history theory.

If, on the other hand, we look for a universal physical selection mecha-

nism, we would not have to think much before conjecturing that the ever-
present gravitational field somehow might be relevant. This would be a

history language transcription for Penrose’ s idea of gravitationally induced

state vector reduction. Appealing as it might seem, it still has its problems;

if a quantum theory of gravity exists and is to be written in the history

language, what would be its preferred quasiclassical domain? (Or are we to

consider quantum gravity as the realm of the many coexistent windows?)
The above remarks have set the conceptual ground upon which the

issues discussed in this paper are to stand. More precisely, our aim is as

follows: (a) propose a natural minimal condition to be satisfied by a preferred

window, (b) examine a concrete caseÐ the emergence of classical mechan-

icsÐ and (c) use the insight obtained by this to strengthen our condition into

a sharp selection criterion. The discussion will suggest the existence of
preferred variables in quantum mechanics. Finally, by inverting the argumen-

tation we will be led to examine the possibility of formulating a history

theory with reference only to those objects. Such a version of history theory

would not need to keep the full nondistributivity of the lattice of quantum
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propositions and would seem to converge to strongly interpretational schemes

for quantum mechanics.

We start by stating what the minimum requirement for a selection crite-
rion can be and through the study of its consequences we shall arrive at a

more precise formulation. Our minimum requirement is that there is a sense
according to which the preferred window retains the temporal structure of
the full history theory. More precisely, we want the preferred window to

correspond to a classical history. By window to reality we define a maximal
subset of the algebra of history propositions such that any exhaustive and
exclusive set constructed out of its elements is consistent. Now, this criterion,

is an implicit one in Gell-Mann and Hartle’ s definition of a quasiclassical

domain as a maximal consistent subalgebra on which approximately determin-

istic laws can be defined. Of course this approach is in conflict with ours,

since it is meant to identify the nature of the window attuned to which an

intelligent data-gathering and computing system can evolve (Gell-Mann and
Hartle, 1993) without doubting the simultaneous validity of the different

windows [this has been discussed extensively in Dowker and Kert (1996)].

We should also note that this definition of a window does not preclude at

first sight that contradictory inferences of the type discussed by Kent arise

when reasoning within different consistent sets contained in the window.
Now we proceed to state more precisely what is involved in the above

requirement. For this, one needs first to define what we mean by classical

history theory.

2. CLASSICAL HISTORIES

We will prefer to cast the classical histories in the language of classical

probability rather than classical mechanics (CM), for the logical structure of

the latter is a special case of the former.

The primitive element in probability theory is the notion of the sample

space: a measure space X (which can be taken as a symplectic manifold in

the case of CM). The space of observables is the commutative algebra O (X )
of random variables, i.e., measurable functions from X to R (usually taken

to satisfy some suitable condition according to extra structures on X, e.g.,

smoothness in the case of CM). A state v is a positive linear functional on

O (X ) assigning to each random variable A its mean value v (A ) [it corresponds

to a positive element r v of +1(X )].

A single-time proposition corresponds to a measurable subset C of X
(the system lies in C at this particular time). The set of all measurable subsets

of X forms a Boolean lattice B (X ), which can be concretely represented by

the projective elements of the Banach algebra + ` (X ): these are nothing but

the characteristic functions x C(x) of the measurable sets. The association of
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the characteristic functions to propositions about values of random variables

is established through the commutative algebra version of the spectral theorem

F (x) 5 # l d l x C l (x) (1)

where F (x) is a general element of O (X ) and C l is the subset of X where F
takes the value l .

It is easy to see how one can translate the constructions of quantum

mechanical histories in this case. An n-time history is essentially a string of

measurable subsets of x: (Ct1, Ct2, . . . , Ctn). This is represented by the

projector x c1, ^ . . . ^ x Cn, which is an element of ^ n+
` (X ) 5 +( 3 nX ).

The construction of the space of history propositions then trivially proceeds
along the lines of Isham (1114; Isham and Linden, 1994).4

In a classical theory there is no obstacle in consistently assigning proba-

bility measures to all histories. Nevertheless, we will try to write the probabil-

ity assignment through a decoherence functional, to establish contact with

the quantum case. Of course, the interference measured by this will be trivial,
i.e., it will be due only to the nondisjointness of a pair of histories.

Time evolution in a classical probabilistic theory is given by a family

(actually a semigroup) of bistochastic maps5 Tt: + ` (X ) ® + ` (X ). These

induce a family of maps T ²
t on the space of states by (T ²

t v )(A ) 5 v (T (A )),

in terms of which a (real-valued) decoherence functional for a pair of histories

a 5 (C1 , . . . , Cn) and a 8 5 (C 81 , . . . , C 8n) with same temporal support, reads

d ( a , a 8) 5 Tr( x Cn(T
²
tn 2 tn 2 1(. . . T ²

t2 2 t1( x C1T
²
t1 ( r 0)) x C8

1) . . .)) x C8
n) (2)

We should distinguish two cases:

(i) Deterministic dynamics: T is an automorphism of the algebra of
observables and generically can be defined through a permutation t on X (a

canonical transformation for the case of CM): T (A )(x) 5 t *Ax) 5 A ( t x). In

this case it is trivial to verify that a history can be represented by a projector

on + ` (X ), namely

x a 5 x t 1C1 ù t 2C2 ù ¼ t nCn (3)

(ii) Random dynamics: T is a convex combination of automorphisms:

T 5 ( i l i t 8i . Using the convexity property of the decoherence functionals

4 The construction for continuous-tim e histories should follow similar reasoning: taking the
quantities xt P 3 tX t as corresponding to fine-grained histories, and constructing coarse grain-
ings through the use of a Wiener measure on X.

5 A linear, positive map T: + ` (X ) ® + ` (X ) is called bistochastic if T (1) 5 1 and its restriction
on +1(X ) is trace preserving.
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(Isham and Linden, 1996) it is easy to establish that expression (3) defines

a well-behaved decoherence functional.6

Finally we choose to define implication through conditional probability.
If a and b are disjoint propositions, then we say that a implies b if

p( a ø b ) 5 p( a ).

We could then proceed and incorporate the classical history theory as

a special case of the history axiomatics as written down by Isham (1994;

Isham and Linden, 1994) except for the fact that not every Boolean lattice

is suitable as a space of history propositions. Fundamental for any formulation
of probability theory is the stability of the sample space through time. Hence

the lattice of history propositions should always be identified with the charac-

teristic functions of some measurable space of the form xtXt , where the Xt

are related by structure-preserving bijections.

3. THE CLASSICAL MECHANICS WINDOW

We are now going to examine the sense in which the world of classical

mechanics arises as a particular window in a quantum mechanical history theory.

The aim is to identify the important structures that eventually give the

corresponding quasiclassical domain and use this information to sharpen our
previous requirements to a selection criterion. We will restrict ourselves to

the case of nonrelativistic particle mechanics, since (a) for quantum field

theory we have neither a history version nor a clear understanding of its

classical limit, and (b) we shall rely on the insight obtained by OmneÂ’ s (1989,

1996) semiclassical theorems.

Let us anticipate the discussion to follow and give a useful characteriza-
tion for a class of classical histories. Whenever the sample space carries a

metric structure one can define a map n :@(X ) ® R+ such that n (C ) gives a

measure of the size and regularity of the cell C (i.e., the ratio of the area of

its boundary - C to its volume) in such a way that n (C ) is close to zero when

C is sufficiently large and regular. There is a precise sense in which n can
be constructed; the reader is referred to OmneÂs (1989, 1996) for details. We

then call a classical history theory ( 3 tXt , d, m ) e -deterministic if, for any

cell C such that n (C ) 5 O ( e ), there exists another cell C 8 with n (C 8) 5
O( e ) such that the conditional probability p (C, t1; C 8, t2 | C, t1) is of order O ( e ).

6 Incidental to our aims is the fact that this construction of a decoherence functional containing
random dynamics can be repeated (modulo a few technicalities) in the quantum mechanical
case by making use of the ILS theorem (Isham et al., 1994). In particular this implies that
theories of stochastic state vector reduction (like in Ghirardi et al., 1986) can be nicely
incorporated in the history formalism and hence suffer from the multiple-windows problem.
We can therefore conclude that no modification in the dynamics is sufficient by itself to
provide a selection criterion.
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This essentially means that the randomness of the dynamics is significant only

on scales of the order of the characteristic length of the metric. Two e -

deterministic theories are equivalent if they have isomorphic sample space
X and the conditional probabilities of the two theories differ in the order of e .

OmneÂs’ construction starts from the well-known fact that the classical

phase space can be naturally embedded in the projective space of itscorrespond-

ing Hilbert space by the use of the canonical group. Starting from the representa-

tion of the canonical group on the Hilbert space of the theory, one can construct

the mapping jr from the phase space G to the coherent state projectors z ® Pz

5 U (z) | r & ^ r | U (z) 2 1, where | r & is an arbitrary vector of H. Hence jr embeds X
into 3H. The pullback of the Fubini±Study metric on 3H defines a metric

on X with respect to which a function n of the type discussed above can be

constructed. Note that for a generic group there is an optimization algorithm

(Perelomov, 1986) for the choice of | r & , so that the characteristic scale of the

metric on X is essentially " . In the case of quantum mechanics on +2(Rn) this
algorithm leads to Gaussian coherent states.

One can then construct approximate projectors corresponding to ª classi-

calº types of propositions about phase space cells:

PC 5 # C

d m (z)Pz (4)

where m is a measure on X. If n (C ) 5 O ( e ), then any projector in an e -

neighborhood of Pz can be thought of as representing the cell C.

To establish consistency one needs then an important fact: that coherent

states on +2(Rn) are approximately stable under the time evolution generated

by Hamiltonians of the form H 5 p 2/2m 1 V (x) for a large class of physically
interesting potentials V (x). This can be used to establish consistency for all

exclusive and exhaustive sets of histories constructed out of quasiprojectors

corresponding to cells C with a small value of n .7 We also get approximate

7 What OmneÂs has actually established is approximate consistency [of order e 5 n (C )] of these
sets, and assumed that there exist history propositions close to them out of which an exact
consistent set can be formed. Although this is a plausible assumption, it still remains to be
proved. Let us see what is involved in this proof. Taking two n-time histories, the decoherence
functional can be restricted to a continuous map d: ( ^ nB (H )) ^ ( ^ nB (H )) ® C. Consider a
set of N history propositions constructed by approximate projectors P i , i 5 1, . . . , N, and
assume d (P i , P j) , e (an unsharp approximate consistency criterion). Now if one defines the
sets O e 5 d 2 1 ({z P Ci | z | , e }) and C0 5 d 2 1 ({0}), it is sufficient to show that the connected
component of C0 contained in the same component of O e with P i ^ P j has nonempty interior.
For then we can use the fact that the set of projectors is dense in B (H ) to associate exact
projectors P exact

j in an e -neighborhood of P j such that we have exact consistency. This seems
to be a generic case for sets of n-time histories in infinite-dimensional Hilbert spaces. Of
course, when one assumes continuous-tim e histories the issue becomes more complicated. A
study of the general case would be invaluable toward understanding the ª predictability sieveº
on the possible fine grainings of a consistent set.
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determinism, corresponding to evolution with a classical Hamiltonian

H (z) 5 Tr(PzH ). In this sense the window correponding to classical mechanics

corresponds to a classical e -deterministic history theory (by no means a
unique one).

From the above discussion it is clear that the classical mechanics window

satisfies our previously stated requirement. We are now in a position to give

a more precise characterization: A preferred window is one such that each

consistent subset of it can be embedded into the lattice of propositions of a
classical history theory. It might be the case that to get uniqueness, we must

impose some condition of maximality on the corresponding classical history

so that trivial windows will get excluded. An example is the window corres-

ponding to propositions about values of energy, any subset of which is trivially

consistent (it seems that one cannot get any contradictory inferences by

considering such a set in conjunction with the CM window). Anyway, if it

turns out to be necessary to include a maximality condition, this can easily

take the form of specifying an extra structure (i.e., the requirement that it is

a topological space or a manifold for the case of CM) for the sample space

X of the emergent (or underlying?) classical history theory.

In our particular case, the window corresponding to classical mechanics

can be shown to be essentially unique, for a different selected window

(corresponding to a classical history with sample space X ) would imply the

existence of an embedding of X on the projective Hilbert space (or more

generally the existence of a projection-valued measure, PVM) on X. Without

loss of generality we can take X to be a subspace of Rn, and consider the

marginal PVM corresponding to a one-dimensional submanifold of X. This

defines a self-adjoint operator. Now a fundamental property of the canonical

group is that its spectral projections generate the whole of B(H ) and hence

this operator can be represented as f (zÃ), where zÃrepresents the generators

of the canonical group and f some measurable function. This means that the

classical history propositions corresponding to X can be embedded into the

lattice of history propositions of the CM window.8 It is in this sense that the

CM window (assuming of course that it exists) is maximal. (Note that in the

above argumentation X is assumed to be a manifold.)

Note also that with such a definition of a preferred window, contrary

inferences of the type exhibited by Kent do not appear. The reason for this

is that in such a window all consistent sets contain only coarse-grained

8 There are factor ordering ambiguities when choosing f. To make the above arguments into a
rigorous proof, one needs to show that observables corresponding to functions with different
factor ordering define equivalent e -deterministic thepories. This is quite plausible for e on
the order of " in some power, in view of existing semiclassical theorems, existing but we
have been unable to find a general proof.
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propositions, while in Kent’ s construction one has to assume at least the final

time proposition to correspond to a one-dimensional projector.

A remark is in order at this point concerning the role of the hydrodynamic
variables discussed extensively by Gell-Mann and Hartle. Whenever the CM

window exists, the construction of theses variables proceeds along the lines

of classical hydrodynamics, since they can be viewed as further coarse grain-

ing on the emergent classical history theory. More interesting would be the

case where the CM window does not exist (i.e., the propositions constructed

from the canonical group form no nontrivial consistent sets). In that case it
is conceivable that two complementary hydrodynamic windows might exist.

This would of course invalidate our argument that the proposed selection

criterion chooses a unique window. (It is hard to imagine such a set of

variables that does not reduce to ordinary hydrodynami cs or at least to an

extension of irreversible thermodynamics.) The physical system where this

might be possible is quantum field theory, where there are indirect arguments
(Anastopoulous, 1997) (though definitely not conclusive) that the classical

field theory window might not be emerging for a large class of states of

the system.

4. PREFERRED WINDOW AND NONDISTRIBUTIVITY

From the arguments stated earlier, it should be clear that if we commit
ourselves to the logic of one preferred window, we cannot escape the conclu-
sion that it is generated by a particular class of Hilbert space operators (the

ones determined by the canonical group). The question then arises: what is

the nature of the other windows (the ones not stable in time)? They cannot

be considered as anything but redundant, for they are irrelevant to any physical

predictions of the theory. But then, why do they appear at all in the formalism?

The only possible answer is that there is a redundancy in the primitive
elements of the history theory. Not all history propositions can be considered

as physical. This is a point strongly reminiscent of the one advocated in the

context of single-time quantum mechanics by Margenau and Park (1968);

the incomeasurability of observables corresponding to noncommuting opera-

tors can be true in quantum mechanics only if one accepts as an axiom that
any operator on the Hilbert space corresponds to some physical observable.
The many-windows problem is just the history counterpart of the incomeasur-

ability problem of single-time quantum mechanics; and it is due to the richest

structure of the former that the counterintuitive effects of such a postulate

are most impressive.9

9 Actually one of the strongest arguments posed by Margenau and Park involved time-of-
flight type of experiments, with an analysis that can be thought of as an ancestor of the
history formalism.
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A consequence of not accepting all operators as physical is that there

is no need to keep the nondistributive character of the lattice of history

propositions [see Margenau and Park (1968) for extensive discussion]; indeed,

reasoning inversely, the nondistibutivity is the main assumption that allows

multiple windows. One should then start thinking of possible substitutes. If

one opts for a distributive lattice structure for history propositions, the first

choice would be to consider Boolean lattices. Of course, hidden-variables

theories fall in this category (even though they would correspond to a classical

history theory). Another approach would be Sorkin’ s quantum measure theory,

where the lattice of history propositions is assumed Boolean and the role of

the decoherence functional is played by a nonadditive measure on this lattice

Sorkin (1994, 1996).

It turns out that a history theory with a preferred window looks similar

to a Sorkin-type construction. Recall the importance of the canonical group

toward identifying the preferred window. In standard quantum mechanics,

its role is also important. Since all infinite-dimensional Hilbert spaces are

isomorphic, the only way one can separate the physical content of (say)

+2(R) from +2(R3) is by considering the representations of different canonical

groups (its history version is also very important toward constructing explic-

itly the space of history propositions). One is then tempted to ask the following

question: Can one construct a history theory using only ª classicalº primitive

elements (canonical group or the phase space that can be constructed from it,

possibly plus some additionalÐ complexÐ structure)? One can, for instance,

assume as primitive elements the paths z (t), z*(t) on some ª phase spaceº X

and their coarse grainings as given by integration with respect to some

Wiener measure and a coherent-state path-integral version of the decoherence

functional between pairs of coarse grained histories a 5 * C a d m (z ( ? ),

z*( ? )) and a 8 5 # C8a
d m (z ( ? ), z*( ? )):

d ( a , a 8) 5 # dzf dz*f dzi dz*i dz*i dz8i dz8*i exp( 2 z *f zf 2 z *i zi 2 z 8*i z 8i )

We have

1 # C a

d m (z ( ? ), z*( ? )) # C a 8

d m (z8( ? ),z 8*( ? ))

exp{iS[z ( ? ), z*( ? )] 2 iS[z8( ? ), z 8*( ? )]} 2 r (z *i , z 8i ) (5)
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with path integration over paths such that z (0) 5 zi , z*(t) 5 z *f , z8(t) 5
zf , z8*(0) 5 z 8*i . Modulo some difference in the probability assignment, this

construction is a close relative of Sorkin’ s theory.
Unfortunately, this construction is at least incomplete and for a more

fundamental reason than the ill-posed definition of a non-Euclidean time

path integral: there is no way we can reproduce the quantum mechanical

combination of subsystems via the tensor product solely from the knowledge

of X; we have to introduce a linear structure and hence the Hilbert space

would eventually again enter our schemes.
Before concluding, let us summarize the thesis of this paper. If one

wishes for a history theory allowing (a) maximum predictability and (b) a

realist commitment, the option of seeking a selection algorithm among differ-

ent windows is a natural one. Our proposed selection criterion (of temporal

stability of the preferred window) seems to imply that only a class of history

propositions is physically relevant, hence that the nondistributivity of the
lattice of history propositions is redundant. If one then attempts to write an

ª economicº version of history theory where only physical quantities are taken

into account, then one faces one fundamental problem: how would the Hilbert

space structure emerge in such a theory? The problem can be neatly summa-

rized as the inverse of the many-windows problem: How does one recover
the Hilbert space from (distributive) ª common senseº ?
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